On some historical aspects of Riemann zeta function , 1
نویسنده
چکیده
Within the variegated framework of Riemann zeta function and related conjecture (Riemann Hypothesis), we would like to start with a study of some quite disregarded or not much in-deep studied historical aspects concerning Entire Function Theory aspects of Riemann zeta function. This first paper essentially would be the manifesto of such a historical research program whose main points will be in deep studied and developed later with forthcoming works.
منابع مشابه
A more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملTwisted Second Moments and Explicit Formulae of the Riemann Zeta-Function
Mathematisch-naturwissenschaftlichen Fakultät Doctor of Philosophy Twisted Second Moments and Explicit Formulae of the Riemann Zeta-Function by Nicolas Martinez Robles Verschiedene Aspekte, die analytische Zahlentheorie und die Riemann zeta-Funktion verbinden, werden erweitert. Dies beinhaltet: 1. explizite Formeln, die eine Verbindung zwischen der Möbiusfunktion und den nichttrivialen Nullstel...
متن کاملOn some mathematical connections between Fermat’s Last Theorem, Modular Functions, Modular Elliptic Curves and some sector of String Theory
This paper is fundamentally a review, a thesis, of principal results obtained in some sectors of Number Theory and String Theory of various authoritative theoretical physicists and mathematicians. Precisely, we have described some mathematical results regarding the Fermat’s Last Theorem, the Mellin transform, the Riemann zeta function, the Ramanujan’s modular equations, how primes and adeles ar...
متن کاملq-Riemann zeta function
We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)= ∑∞ n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can be viewed as interpolation of the above q-analogue of Riemann zeta function at negative integers in the same way that Riemann zeta function interpolates Bernoulli numbers at negative integers. Also, we will treat some...
متن کاملAspects of Analytic Number Theory: The Universality of the Riemann Zeta-Function
Abstract. These notes deal with Voronin’s universality theorem which states, roughly speaking, that any non-vanishing analytic function can be uniformly approximated by certain shifts of the Riemann zeta-function. We start with a brief introduction to the classical theory of the zeta-function. Then we give a self-contained proof of the universality theorem. We conclude with several interesting ...
متن کامل